影像学检查的辐射风险: 真的有那么可怕吗?

▲ 福建惠安县医院 **吴伟鹏**

超声检查、X线检查、CT检查、核磁共 振等都是常用的影像学检查, 为疾病的诊断 与治疗提供了可靠的数据支持。但是人们对 影像学检查都存在一些认知的误区,认为影 像学检查都有辐射大风险, 那么影像学检查

真的有那么

可怕吗?

什么是辐射

辐射是自然界中传播能量方式之一,是 物质或能量以电磁波、粒子、热量等形式从 一个物体向周围传播的过程。在医学成像领 域,主要涉及电离辐射,这种辐射能够导致

常见 的影像学检查及辐射剂量

超声检查 超声检查 主要是利用超声波 来成像,这种检查 并不会产生电离辐 射,没有辐射的风

X线检查X线 检查主要是利用X 射线来成像,被广 泛地用于骨骼、肺 部、消化道等器官 组织的检查中, 具 有一定的辐射量。

但是它的辐射 剂量是相当低的, 单次检查辐射剂量 约为 0.023 mSv。而正 常情况下,成年人每年

来源 / 千库网

线检查的辐射剂量远低于人体可接受的辐射 剂量,是比较安全的。

CT 检查 CT 检查也是利用 X 射线来成 像,可以重建人体横断面的解剖结构,在 肿瘤、创伤、血管性疾病等疾病的诊断中 得到了广泛的应用。CT对人体的辐射剂量 明显高于 X 线检查, 约为 X 线检查的 8 倍, 其中腹部 CT辐射剂量约为 8~15 mSv, 头 部CT约为2 mSv, 也低于人体可接受的辐

核磁共振 (MRI) MRI 主要是利用磁场 和射频波进行成像,不涉及电离辐射,所以 不会对人体造成直接伤害。

辐射风险评估

电离辐射可导致人体细胞 DNA 损伤,长 时间或大剂量接触可增加致痛风险。但是, 辐射的风险具有相对性,与个体体质、年龄、 遗传因素、总辐射量等因素有关。

如果辐射剂量超过了人体接受的阈 值,可能导致急性辐射疾病、皮肤烧伤、 基因改变、癌变等疾病的发生。但是按照 目前影像学检查的情况来看, 任何一项检 查的辐射剂量都控制在较小的水平,是相 对安全的。

但是这不意味着任何人都能够进行X线 检查、CT检查等存在辐射风险的检查。比

可接受的辐射量约为 50mSv, 也就是说, X 如说, 妊娠期的女性, 其腹中的胎儿器官组 织尚未发育完善, 可能受到辐射的伤害而导 致某些基因的缺陷,或导致胎儿停止发育、 流产等。因此,一般情况下,不建议妊娠期 的女性采用X线、CT等具有辐射风险的检查。 甚至建议女性妊娠前3个月和哺乳期都应该 尽量避免这两项检查, 以减少辐射对其身体 的影响。而未成年人身体发育尚未完善,如 果需要进行X线检查、CT检查时应该权衡 利弊。

降低辐射风险的措施

优化检测参数 调整仪器参数(如减少 照射剂量、缩短照射时间等),减少不必要 的照射。

做好防护措施 为被检查对象配备铅制 的防护服或专门的防护装备,以保护非检查 区域,减少辐射对机体的影响。

减少重复检查 短时间内不要频繁进行 X线、CT等具有辐射风险的检查。

结论 CT、X线等影像学检查是临床 诊断的重要途径, 虽然有一定的辐射风 险,但是剂量较低,安全性有保障,所 以不必要恐慌, 可在医生的建议下合理 进行此类检查, 以明确病因, 并为后期 的治疗提供可靠的数据支持, 以免延误 了治疗时机。

超声诊断:解锁关节疾病诊断的新视角

随着医疗科技的持续发展, 超声检测作 为一种无创伤性、即时反馈且经济高效的诊 断手段, 在关节病变的识别与评估中日益凸 **显其重要性。**

本文将详细介绍超声诊断在关节疾病中 的应用,探讨其优势、检查内容、应用价值及 局限性,为读者提供一个全面而深入的了解。

超声诊断的基本原理

超声诊断技术依赖于超声波对人体软组 织的高分辨率特性,以精准识别生物组织内 部的细微异常。在这一过程中, 超声波设备 的探头负责发射超声波,这些声波在遭遇不 同组织后会反射回设备并被重新捕获。

各类组织结构因其特性差异,会产生诸 如低回声、无回声或强回声等不同的反射信 号, 这些多样化的回声信号共同构建了我们 所观察到的超声波影像图。

超声诊断在关节疾病中的应用

有独特优势,特别是在诊断微小骨折方面, X线检查尽管是骨科疾病初步评估的常用手 通过超声检查,医生可以准确地判断肌腱损 便利。检查过程同样迅速,经验丰富的医师 可能会错过一些病变。 段,但由于其呈现的是二维图像,往往难以 伤的情况。超声诊断技术同样适用于检测关 捕捉到一些隐蔽的细小骨折。CT 检查虽然 节部位是否生成骨刺,此时,超声图像中骨 检查流程。这对于需要快速诊断的患者来说, 性、即时反馈且成本效益高的检查手段,在 更加精密,但价格较高且患者会受到射线辐 刺形成的区域会显示回声波形显著不规则。 射。而超声诊断可以通过观察骨折部位是否 有超声波透过去,从而发现细微的骨折。

腱损伤时, 超声检查同样展现出了高度的有 效性。健康的肌腱在超声图像中呈现出平滑 且纤维排列有序的特征。然而, 当肌腱发生 断裂时,其形态会发生显著变化,表现为排 的诊断提供有力依据。 列紊乱、松弛,并且在周围区域可能出现积 液或积血的现象。在发生局部小范围的骨头 骨折的诊断,超声诊断在骨折判断中具 皮质撕裂或是轻微骨折时,超声可以判断肌 腱和肌肉、软组织与骨头的连接和毗邻关系; 流程简短,部分医院甚至实现了无需预约的 量。此外,超声检查无法覆盖整个关节区域,

清晰地看到骨折断裂部位的裂隙。在评估肌 性结构异常的诊断,超声检查也极具价值, 查,超声检查在费用上具有显著优势。超声 者的诊断和治疗提供有力依据。

能够准确识别诸如髌前滑囊炎、关节周围小 囊肿及腘窝囊肿等软组织病变。超声检查能 够清晰地显示这些囊性结构的异常, 为医生

超声诊断在关节疾病中的优势

往往能在大约5至10分钟内高效完成整个 无疑是一个巨大的优势。没有辐射,与X线 关节病变的诊断领域内正扮演着愈发关键的 此外, 该技术还能精确评估半月板的形 和 CT 检查相比, 超声检查没有放射性损伤, 态变化,包括其是否异常增大、形态扭曲或 是一种无创性的检查技术。这对于需要多次 判断骨折、肌腱损伤、骨刺、半月板损伤、 例如,在髌骨骨折的超声检查中,可以 发生分裂。对于关节周边滑囊炎症及其他囊 复查的患者来说,尤为重要。相比核磁等检 周围神经及软组织等关节疾病的情况,为患

检查特别适合复查关节手术后的状态。超声 检查还可以用于精准定位关节的注射治疗。

在关节疾病中的应用价值

超声诊断在关节疾病中的应用价值主 要体现在以下几个方面:通过超声检查,医 生可以观察关节病中各个器官的病变严重程 度。超声检查能够为医生提供准确的诊断依 据,帮助医生做出正确的诊断。超声检查可 以评估关节疾病的预后情况, 为治疗方案的 制定提供依据。

通过超声检查, 医生可以随诊追踪治疗 进展,及时调整治疗方案。在手术中,超声 检查可以帮助医生准确定位病变部位,提高 手术成功率。超声检查还可以用于术后评价, 判断手术效果及术后恢复情况。尽管超声诊 断在关节疾病中具有诸多优势,但也存在-定的局限性。

此外, 超声诊断的结果受操作者经验 影响较大,需要经验丰富的操作者进行。肥 超声检查以其便捷高效著称,通常预约 胖患者的肌肉和韧带组织也可能影响检查质

> 综上所述, 超声诊断作为一种非侵入 角色。借助超声检查技术, 医生可以准确地